Skip to content

天楚锐齿

人工智能 云计算 大数据 物联网 IT 通信 嵌入式

天楚锐齿

  • 下载
  • 物联网
  • 云计算
  • 大数据
  • 人工智能
  • Linux&Android
  • 网络
  • 通信
  • 嵌入式
  • 杂七杂八

《神经网络与深度学习》中的Python 3.x 代码network1.py

2019-01-22

《神经网络与深度学习》(Michael Nielsen著)中的代码是基于python2.7的,下面为移植到python3下的代码:

mnist_loader.py代码:

点击下载:mnist_loader

 

“””
mnist_loader
~~~~~~~~~~~~

A library to load the MNIST image data. For details of the data
structures that are returned, see the doc strings for “load_data“
and “load_data_wrapper“. In practice, “load_data_wrapper“ is the
function usually called by our neural network code.
“””

#### Libraries
# Standard library
try:
import cPickle as pickle
except ImportError:
import pickle

# import cPickle
import gzip

# Third-party libraries
import numpy as np

def load_data():
“””Return the MNIST data as a tuple containing the training data,
the validation data, and the test data.

The “training_data“ is returned as a tuple with two entries.
The first entry contains the actual training images. This is a
numpy ndarray with 50,000 entries. Each entry is, in turn, a
numpy ndarray with 784 values, representing the 28 * 28 = 784
pixels in a single MNIST image.

The second entry in the “training_data“ tuple is a numpy ndarray
containing 50,000 entries. Those entries are just the digit
values (0…9) for the corresponding images contained in the first
entry of the tuple.

The “validation_data“ and “test_data“ are similar, except
each contains only 10,000 images.

This is a nice data format, but for use in neural networks it’s
helpful to modify the format of the “training_data“ a little.
That’s done in the wrapper function “load_data_wrapper()“, see
below.
“””
with gzip.open(‘./mnist.pkl.gz’, ‘rb’) as f:
training_data, validation_data, test_data = pickle.load(f, encoding=’latin1′)
#show_mnist_data(training_data, validation_data, test_data)

#f = gzip.open(‘./mnist.pkl.gz’, ‘rb’)
#training_data, validation_data, test_data = cPickle.load(f, encoding=”latin1″)
#f.close()

return (training_data, validation_data, test_data)

def show_mnist_data(training_data, validation_data, test_data):
fw = open(“./log.txt”, ‘w’)
np.set_printoptions(precision=4, linewidth=800)
num = 0
fw.write(“下面为MNIST所有图片灰度化之后再数字化抽样之后的数据。\n”)
fw.write(“====== TRAINING DATA Start… ======\n”)
for x,y in training_data:
num += 1
if(num > 10):
break
fw.write(“++++++ “+str(num)+ ” ++++++\n”)
fw.write(“28×28的图片数据:\n”)
for i in x.reshape(28, 28):
fw.write(str(i)+”\n”)
fw.write(“==>”+ “图片对应0~9共10个数字的权重:”+ str(y.tolist())+”\n”)
if num > 10:
fw.write(“……….\n”)
fw.write(“====== TRAINING DATA End. ======\n”)
fw.write(” \n”)
fw.write(” \n”)

num = 0
fw.write(“====== VALIDATION DATA Start… ======\n”)
for x,y in validation_data:
num += 1
if(num > 10):
break
fw.write(“++++++ “+str(num)+ ” ++++++\n”)
fw.write(“28×28的图片数据:\n”)
for i in x.reshape(28, 28):
fw.write(str(i)+”\n”)
fw.write(“==>”+ “图片所对应的数字:”+ str(y.tolist())+”\n”)
if num > 10:
fw.write(“……….\n”)
fw.write(“====== VALIDATION DATA End. ======\n”)
fw.write(” \n”)
fw.write(” \n”)

num = 0
fw.write(“====== TEST DATA Start… ======\n”)
for x,y in test_data:
num += 1
if(num > 10):
break
fw.write(“++++++ “+str(num)+ ” ++++++\n”)
fw.write(“28×28的图片数据:\n”)
for i in x.reshape(28, 28):
fw.write(str(i)+”\n”)
fw.write(“==>”+ “图片所对应的数字:”+ str(y.tolist())+”\n”)
if num > 10:
fw.write(“……….\n”)
fw.write(“====== TEST DATA End. ======\n”)
fw.write(” \n”)
fw.write(” \n”)
fw.close()

def load_data_wrapper():
“””Return a tuple containing “(training_data, validation_data,
test_data)“. Based on “load_data“, but the format is more
convenient for use in our implementation of neural networks.

In particular, “training_data“ is a list containing 50,000
2-tuples “(x, y)“. “x“ is a 784-dimensional numpy.ndarray
containing the input image. “y“ is a 10-dimensional
numpy.ndarray representing the unit vector corresponding to the
correct digit for “x“.

“validation_data“ and “test_data“ are lists containing 10,000
2-tuples “(x, y)“. In each case, “x“ is a 784-dimensional
numpy.ndarry containing the input image, and “y“ is the
corresponding classification, i.e., the digit values (integers)
corresponding to “x“.

Obviously, this means we’re using slightly different formats for
the training data and the validation / test data. These formats
turn out to be the most convenient for use in our neural network
code.”””
tr_d, va_d, te_d = load_data()
training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
training_results = [vectorized_result(y) for y in tr_d[1]]
training_data = zip(training_inputs, training_results)
validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
validation_data = zip(validation_inputs, va_d[1])
test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
test_data = zip(test_inputs, te_d[1])

# show_mnist_data(training_data, validation_data, test_data) #输出,但是zip的iter变量只能用一次,输出之后zip就变空了
return (training_data, validation_data, test_data)

def vectorized_result(j):
“””Return a 10-dimensional unit vector with a 1.0 in the jth
position and zeroes elsewhere. This is used to convert a digit
(0…9) into a corresponding desired output from the neural
network.”””
e = np.zeros((10, 1))
e[j] = 1.0
return e

network1.py代码:
点击下载:network1

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import random
import numpy as np

def sigmoid(z):
“””The simgoid fnction.”””
return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
“””Derivative of the sigmoid function.”””
return sigmoid(z)*(1-sigmoid(z))

class Network(object):
def __init__(self, sizes):
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]

print(“输入图片像素点数:”+str(self.sizes[0]) +”, 输入神经网络层数:”+str(self.num_layers))
print(“第 1 层为输入层(共 “+str(self.sizes[0])+” 个神经元),权重和偏置都不需要。”)
for i in range(1, self.num_layers):
print(“第 “+str(i+1)+” 层共有 “+str(self.sizes[i])+” 个神经元,初始权重和偏置如下。”)
print(” “)
layer = 1
print(“训练前的权重和偏置:”)
for lw, lb in zip(self.weights, self.biases):
layer += 1
num_nw = 0
for w, b in zip(lw, lb):
num_nw += 1
print(“第 “+str(layer)+” 层第 “+str(num_nw)+” 个神经元的权重(共”+str(len(w))+”个输入):”)
print(str(w))
print(“第 “+str(layer)+” 层第 “+str(num_nw)+” 个神经元的偏置(共”+str(len(b))+”个输出):”)
print(str(b))
print(” “)
print(” “)

def feedforward(self ,a):
“””return the output of the network if “a” is input.”””
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
“””Train the neural network using mini-batch stochastic gradient descent.
The “training_data” is a list of tuples “(x, y)” representing the training inputs and the desired outputs.
The other non-optional parameters are self-explanatory.
If “test_data” is provided then the network will be evaluated against the test data after each epoch, and partial progress printed out.
This is useful for tracking progress, but slows things down substantially.
“””
training_data_list = list(training_data)
test_data_list = list(test_data)
if test_data:
n_test = len(test_data_list)
n = len(training_data_list)
print(“=================================================================”)
print(“=================================================================”)
printStr = “”
loop = 0
for j in range(epochs):
loop += 1
random.shuffle(training_data_list)
training_data = training_data_list
mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
test_data = test_data_list
printStr += (“Epoch {0}: 成功识别:{1} / 总共:{2}”.format(j, self.evaluate(test_data), n_test)+”\n”)
print(“Epoch {0}: 成功识别:{1} / 总共:{2}”.format(j, self.evaluate(test_data), n_test))
else:
print(“Loop “+str(loop))
printStr += (“Epoch {0} complete”.format(j)+”\n”)
print(“Epoch {0} complete”.format(j))

print(“=================================================================”)
print(“=================================================================”)

print(” “)
layer = 1
print(“训练后的权重和偏置:”)
for lw, lb in zip(self.weights, self.biases):
layer += 1
num_nw = 0
for w, b in zip(lw, lb):
num_nw += 1
print(“第 “+str(layer)+” 层第 “+str(num_nw)+” 个神经元的权重(共”+str(len(w))+”个输入):”)
print(str(w))
print(“第 “+str(layer)+” 层第 “+str(num_nw)+” 个神经元的偏置(共”+str(len(b))+”个输出):”)
print(str(b))
print(” “)
print(” “)

print(“=================================================================”)
print(“=================================================================”)
print(printStr)
print(“每层测试结果的计算公式: (输入1*权重1 + 输入2*权重2 + 输入3*权重3 + …) + 偏置 “)
print(“a1*w11—|”)
print(“a2*w12—|+b1—|”)
print(“a3*w13—| |”)
print(“……—| |-output”)
print(“a1*w21—| |”)
print(“a2*w22—|+b2—|”)
print(“a3*w23—|”)
print(“……—|”)

def update_mini_batch(self, mini_batch, eta):
“””Update the network’s weights and biases by applying gradient descent using backpropagation to a single mini batch.
The “mini_batch” is a list of tuples “(x, y)”, and “eta” is the learning rate.
“””
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w – (eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
self.biases = [b – (eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]

def backprop(self, x, y):
“””Return a tuple “(nabla_b, nabla_w)“ representing the gradient for the cost function C_x.
“nabla_b“ and “nabla_w“ are layer-by-layer lists of numpy arrays, similar to “self.biases“ and “self.weights“.
“””
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
#feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation) + b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It’s a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)

def evaluate(self, test_data):
“””Return the number of test inputs for which the neural network outputs the correct result.
Note that the neural network’s output is assumed to be the index of whichever neuron in the final layer has the highest activation.
“””
test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)

def cost_derivative(self, output_activations, y):
“””Return the vector of partial derivatives \partial C_x / \partial a for the output activations.
“””
return (output_activations – y)

def test():
import mnist_loader
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
net = Network([784, 30, 10])
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

if __name__ == ‘__main__’:
test()

934次阅读

Post navigation

前一篇:

中国金融数据月度报表-2018年12月

后一篇:

《神经网络与深度学习》中的Python 3.x 代码network2.py

发表评论 取消回复

邮箱地址不会被公开。 必填项已用*标注

个人介绍

需要么,有事情这里找联系方式:关于天楚锐齿

=== 美女同欣赏,好酒共品尝 ===

微信扫描二维码赞赏该文章:

扫描二维码分享该文章:

分类目录

  • Linux&Android (79)
  • Uncategorized (1)
  • 下载 (28)
  • 云计算 (37)
  • 人工智能 (8)
  • 大数据 (24)
  • 嵌入式 (34)
  • 杂七杂八 (34)
  • 物联网 (59)
  • 网络 (23)
  • 通信 (21)

文章归档

近期文章

  • 使用Python渲染OpenGL的.obj和.mtl文件
  • 用LVGL图形库绘制二维码
  • Android使用Messenger和SharedMemory实现跨app的海量数据传输
  • CAN信号的c语言解析代码
  • QT qml下DBus的使用例子

近期评论

  • 硕发表在《使用Android的HIDL+AIDL方式编写从HAL层到APP层的程序》
  • maxshu发表在《使用Android的HIDL+AIDL方式编写从HAL层到APP层的程序》
  • Ambition发表在《使用Android的HIDL+AIDL方式编写从HAL层到APP层的程序》
  • Ambition发表在《使用Android的HIDL+AIDL方式编写从HAL层到APP层的程序》
  • maxshu发表在《Android9下用ethernet 的Tether模式来做路由器功能》

阅读量

  • 使用Android的HIDL+AIDL方式编写从HAL层到APP层的程序 - 16,808次阅读
  • 卸载深信服Ingress、SecurityDesktop客户端 - 12,079次阅读
  • 车机技术之Android Automotive - 6,661次阅读
  • 车机技术之车规级Linux-Automotive Grade Linux(AGL) - 5,866次阅读
  • Linux策略路由及iptables mangle、ip rule、ip route关系及一种Network is unreachable错误 - 5,711次阅读
  • 在Android9下用ndk编译vSomeIP和CommonAPI以及使用例子 - 5,658次阅读
  • linux下的unbound DNS服务器设置详解 - 5,601次阅读
  • linux的tee命令导致ssh客户端下的shell卡住不动 - 4,998次阅读
  • 车机技术之360°全景影像(环视)系统 - 4,897次阅读
  • libwebp(处理webp图像)的安装和使用 - 4,749次阅读

功能

  • 文章RSS
  • 评论RSS

联系方式

地址
深圳市科技园

时间
周一至周五:  9:00~12:00,14:00~18:00
周六和周日:10:00~12:00

标签

android AT命令 centos Hadoop hdfs ip ipv6 kickstart linux mapreduce mini6410 modem OAuth openstack os python socket ssh uboot 内核 协议 安装 嵌入式 性能 报表 授权 操作系统 数据 数据库 月报 模型 汽车 测试 深信服 深度学习 源代码 神经网络 统计 编译 网络 脚本 虚拟机 调制解调器 车机 金融
© 2023 天楚锐齿